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Mitigating climate change relies heavily upon the electricity system. Simulations suggest

that to decarbonize the economy, the electricity sector needs to power many activities that

today use fossil fuels directly, such as transportation or heating and cooking, and that this

power needs to be supplied by renewable resources (Jacobson et al., 2017). To meet the

higher level of demand for electricity with carbon-free generation will require a significant

amount of new power plants to be built. For example, the National Renewable Energy Lab

recently estimated that, to reach 100% clean energy by 2035, total power plant capacity

in the US would need to more than double (Denholm et al., 2022). This could require on

the order of $1.7 trillion in capital investment over the next decade (Phadke et al., 2020).

One factor that could affect the total cost to decarbonize is market structure. In many US

states, the electricity sector remains fully regulated, and utility commissions determine the

prices for vertically integrated utilities, who are granted a local monopoly over their given

service territory. In other states, electricity is partially or fully deregulated, with com-

petitive reforms introduced to part or all of the functions needed to generate and deliver

power to customers. The heterogeneity creates different incentives for utility investment

in infrastructure. Economists have long theorized that the way states regulate utilities can

distort the companies’ investment decisions, biasing production towards capital (Averch

and Johnson, 1962). In the next decade, a natural concern is that regulation may in-

flate utilities’ investment in a renewable transition beyond the level that may be socially

optimal. Given the high baseline estimates of how much it might cost to decarbonize,

any additional increase in costs risks undermining the already tenuous public support for

change and reducing the net social benefit realized.

Reforms passed during the 1990s and early 2000s create an opportunity to study how elec-

tricity regulation affects investment and to evaluate if a more competitive market structure

can achieve better societal outcomes. The most comprehensive competitive reforms oc-

curred within electricity generation: federal policy enabled the creation of open wholesale

power markets (Cicala, 2022), and many states removed generation as a regulated func-

tion, such that investment by utilities in power plants would not be “recoverable” through

higher, regulated prices. Despite a formidable body of economic research on electric-

ity restructuring, the effect of reform on capital investment has been largely unexplored

(Borenstein and Bushnell, 2015; Bushnell, Mansur and Novan, 2017). The gap is espe-

cially notable because, prior to reform, scholars anticipated that competition would yield

the largest benefit through reductions to generation investment.1 A single paper recently

found that the transition to competitive markets may have led to a disproportionate in-

crease in entry among new power plants (Hill, 2021). However, the analysis focused on

the short-term effect of changing market structures. Whether there have been long-term

changes to investment in electricity generation, as a result of competitive reforms, has not

been established.

1As Paul Joskow stated in 1997: “The most important opportunities for cost savings are associated
with long-run investments in generation capacity” (Joskow (1997), at p. 125).
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In this paper, I quantify how competition affects investment in electricity generation. To

do so, I take advantage of a natural experiment that exposed a select set of power plants

to both regulated and competitive market structures. In the late 1990s, investor-owned

utilities sold or transferred hundreds of power plants to unregulated entities. These ‘di-

vestitures’ were largely prompted by policymakers in reform states who sought to preempt

a single company from exerting undue market power in newly-formed wholesale electricity

markets. Once a plant was divested, competitive markets defined the economic incentives

for new investment, rather than regulation. After an asset was sold or transferred to an

unregulated company, the primary way for the power plant to earn revenue was to bid and

sell its generation into wholesale exchanges. By studying how a power plant evolves after

it was divested, it’s thus possible to identify the effect of competitive reforms in electricity

generation on capital investment, relative to a regulated counter-factual.

Using a difference-in-difference design, I find that competition led to large and robust

decrease in the level of capital investment a power plant receives. To overcome that

capital investment is unobserved after a plant is deregulated, I use the size or ‘capacity’

of a power plant as a proxy, which will become larger when capital is invested to either

uprate existing generators or to add a new generator, and vice versa. Capacity acts as a

conservative proxy, because capital can be spent on the plant in ways that is not reflected

in a larger size (e.g., pollution controls). I focus the analysis on a sample of 800 power

plants that burn fossil fuels–such as coal, oil, and natural gas–because they are more

likely to be modular than other generating technologies. After divestment, I show that a

fossil power plant is 9.1% smaller, on average across years, relative to comparable plants

that remain regulated. This is equivalent to a decrease of 47 megawatts (MW) from the

mean plant size of 522 MW. The reduction in capacity translates to about $16.4 billion

in avoided investment, each year, across the cohort of 273 divested power plants, if we

assume that additions would have been combined cycle generators.

I show the decrease in investment was likely welfare-enhancing by incorporating data on

how power plants operated. A new generator can change the operating characteristics

of a power plant, in addition to its size, with associated social benefit. Of particular

interest in this setting is the use of natural gas; power plants that remain regulated

become larger over time primarily by adding new natural gas generators, which could

increase the plants’ operating efficiencies or reduce their carbon dioxide emissions through

coal-to-gas switching. However, I do not find any evidence of degradation in how divested

plants operated as a result of their lower level of investment. While fossil power plants

do generate less frequently, after divestment, there is no observable change in their rate

of generation, the efficiency with which they use fuel, nor the carbon intensity of their

fuel mix, relative to regulated power plants. This suggests the considerable savings for

consumers in avoided capital investment is likely to be a net social benefit.

Finally, I provide evidence that the treatment effect is likely to be externally valid for

3



investment in other power plant types, such as solar or wind. The decrease in investment

among fossil power plants is identified, in part, on counter-factual additions among regu-

lated plants. Using financial data for utilities which own these control plants, I show that

the higher level of investment coincided with an increase in firms’ production costs–the

exact conditions under which theory predicts the Averch-Johnson effect (or, a bias towards

capital investment) is most likely emerge (Joskow, 1974). This indicates that exposure

to competitive markets reduced costs, in part, by removing a distortion to investment

created by cost-of-service regulation. Because the investment incentive is not limited to

one technology, it implies the treatment effect is not specific to fossil power plants. In

other words, regulation can lead to “over-” investment in future renewable power plants,

relative to a competitive market, as it did for past investment in fossil plants.

The paper makes two primary contributions to the literature. First, research on electricity

restructuring in the US has documented that competitive reforms led to efficiency gains

in how power plants operate (Bushnell and Wolfram, 2005; Fabrizio, Rose and Wolfram,

2007; Davis and Wolfram, 2012; Cicala, 2015, 2022). This analysis explores if there are

additional effects of competitive reforms within capital investment decisions. I show that

savings to consumers from avoided investment are likely an order of magnitude larger

than operational gains, aligning with researchers’ expectations prior to reform. This ex-

pands our understanding of the full benefits of competitive markets in electricity, both in

the US (Borenstein and Bushnell, 2015; Bushnell, Mansur and Novan, 2017) and abroad

(Pepermans, 2019).

Second, the literature on decarbonization has primarily explored the ability of incentive-

based policy mechanisms, such as carbon taxes or clean energy standards, to encourage

efficient investment in clean energy and achieve zero-carbon emissions in the power sector

(Goulder, Hafstead and Williams, 2016; Kellogg, 2020; Stock and Stuart, 2021; Borenstein

and Kellogg, 2023; Bistline et al., 2024). This paper demonstrates that existing regula-

tion will also determine investment into power plants, even in the absence of additional

environmental policy. The reduced-form approach I use also complements recent work

by Gowrisankaran, Langer and Reguant (2024), who simulate the effect of regulation on

utility investment in natural gas and coal using structural estimation. Overall, the results

indicate that differences in electricity regulation across the US could create regional dis-

parities in the cost-effectiveness of a renewable transition. Given this, competitive reform

in electricity generation warrants further study among policy tools aimed at decarbonizing

the economy.

The remainder of the paper proceeds as follows. Section 1 details the empirical strategy

and provides the intuition for the difference-in-difference design.2 Section 2 describes

the data used. Section 3 provides the main empirical results and estimates the effect of

2Given the volume of prior work on restructuring, I do not provide a detailed policy background in the
paper. Interested readers are referred to Borenstein and Bushnell (2015) and Bushnell, Mansur and Novan
(2017) for two excellent, comprehensive, and recent introductions to the literature.
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divestment on power plant capacity. Section 4 explores how divestment may have affected

power plant operation and what this tells us about the possible welfare implications of a

reduction in investment. Section 5 introduces the intuition and evidence for how regulation

affected counter-factual investment in control plants, in order to inform if the treatment

effects identified on fossil plants are likely to be externally valid for other generating

technologies, like renewables. Section 6 summarizes and concludes.

1 Empirical Strategy

I take advantage of a natural experiment–the divestment of hundreds of power plants

during the late 1990s–to identify the effect of competition on capital investment in elec-

tricity generation. “Divestment” refers to the sale or transfer of a power plant from an

investor-owned utility, whose revenues are determined by cost-of-service regulation, to an

unregulated entity, whose revenues are determined by the sale of generation within com-

petitive wholesale markets.3 Most divestments were prompted by broader market reform

that occurred at the turn of the century; many states that chose to deregulate electricity

generation also required or encouraged utilities to sell their power plants, in order to re-

duce the companies’ ability to exert undue market power in nascent competitive exchanges

(Borenstein and Bushnell, 2015; Bushnell, Mansur and Novan, 2017). Using a difference-

in-difference design, I trace how the level of investment into divested power plants changed,

once exposed to competitive markets.

The divestiture of US power plants has been widely used in the literature to study how

competitive markets affect a range of outcomes, including market power (Mansur, 2007),

investment crowd-out (Ishii and Yan, 2008), fuel procurement (Cicala, 2015), and the op-

erating efficiency of power plants (Bushnell and Wolfram, 2005; Davis and Wolfram, 2012)

and firms (Kwoka, Pollitt and Sergici, 2010). As an identification strategy, it has several

strengths. First, divestment allows researchers to observe the same plant under both reg-

ulated and competitive market structures. This strengthens the argument for causality;

researchers can control for unobserved, unit-specific factors that are time-invariant and

would otherwise confound results, in a way that is difficult once markets are established.

In addition, the sheer number of plants that were divested, as part of reform, has not been

replicated since, and this increases the statistical power of regressions to detect changes.

Third, selection effects among divested plants are less likely to be prominent because most

divestitures were prompted by state policy, rather than voluntary sales among owners.4

Finally, and specific to this setting, divestiture allows us to shorten the time-horizon on

which medium- to long-run effects on investment could normally be observed. New power

3The owner can also sign a power purchase agreement with another party, for a fixed offtake of gener-
ation; this would enable a fixed revenue stream, separate from the market.

4The states which adopted restructuring legislation first tended to be those with higher retail electricity
prices under regulation (Andrews, 2000; Kwoka, 2008; Borenstein and Bushnell, 2015). This affects the
geographic distribution and operating characteristics of divested plants, relative to those that remain
regulated, which I discuss directly throughout the paper.
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plants typically require years of planning and development before they are operational

(and appear in data). Expansions at existing plants can occur more quickly, because

major bottlenecks, such as interconnection, are already overcome.

While capital investment is observed while power plants are regulated, due to reporting

requirements to the Federal Energy Regulatory Commission (FERC), actual investment is

unobserved once a plant is deregulated. As a result, I use the capacity of a power plant as

a proxy, mirroring an approach in prior work (Davis and Wolfram, 2012). The “capacity”

of a power plant is the technical name for its size–roughly, it can be thought of as how

much energy the plant is “capable” of generating–and is measured in megawatts (MW).

Because power plants are modular and can consist of multiple generators, a plant will

become bigger when capital is spent to either add a generator or uprate existing units,

and vice versa. Capacity acts as a conservative proxy for investment, because capital can

be spent on the plant in other ways, such as pollution controls (Fowlie, 2010), that would

not be reflected in a larger plant. Later in the paper, I convert the identified change

in capacity (MW) to an estimated change in investment ($) using average cost factors

($/MW) for different generator types.

I focus the analysis on a sample of 800 fossil power plants that were all operating when

systematic data collection on plant capacity began in 1990. I choose to study fossil power

plants–those that burn coal, oil, and natural gas–because they are more likely to be mod-

ular than other generation technologies. (For example, the capacity of a hydro plant is

likely to be determined by the size of the river and dam, and thus less likely to change over

time.) In 1990, at the start of the panel, restructuring had yet to occur, and all power

plants in the sample were regulated–that is, built, owned, and operated by investor-owned

utilities whose prices were set according to cost-of-service regulation that was defined by

states. Beginning in 1998, a total of 273 of the plants within the sample were eventually

divested and removed from the rate base of regulated utilities. I limit the panel to 1990-

2010, for a total of 21 years, as a way to avoid confounding from build driven by renewable

portfolio standards and the reduction in natural gas prices that dominate the next decade.

A central identifying assumption in this design is that the plants which remain regulated

form an appropriate counterfactual for the level of investment divested plants would have

received over time. Empirical evidence supporting this assumption can be provided by

assessing the similarity in baseline characteristics between treated and control plants.

The main estimating equation is a two-way fixed effect model:

ypt = βdpt + θp + γt + ϵpt. (1)

Here, p indexes a power plant, t indexes a year, and d is a binary variable equal to 1 once

a plant has been divested. The outcome, y, measures the operable capacity of plant p

in period t; if the power plant retires, y is 0. The plant-level fixed effect, θp, captures

time-invariant characteristics of each power plant that can affect investment decisions,
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and the year fixed effect, γt, captures common shocks to new build, such as changes in

resource availability, fuel prices or macro-economic shifts to demand. The coefficient of

interest is β: the average change in capacity, after a plant is divested, in a given year.

With capacity used as a proxy for capital, the design identifies the effect of deregulation

on new investment in power plants.

Because plants are divested in different years (i.e., treatment timing is staggered), and the

effect of divestment is unlikely to be homogenous across both plants and time, the estimate

of β in Equation 1 can be biased due to problematic comparisons between adopting groups

embedded in the simple two-way fixed effect model (Goodman-Bacon, 2021; Wing et al.,

2024). To address the issue, I include additional estimators that are robust to staggered

treatments and heterogeneous treatment effects (Callaway and Sant’Anna, 2021; Gardner,

2022; Wing, Freedman and Hollingsworth, 2024). However, because I find, in practice,

that the simple two-way fixed effect estimates are very similar to those from stagger-robust

estimators, I maintain the two-way fixed model as the main specification and provide the

results from the alternative estimators as robustness checks.

Four additional points about the research design are worth highlighting. First, regional

market conditions–such as, differential levels of new build, or changes in electricity demand–

can create the possibility of group-specific time trends, based on any difference in the geo-

graphic distribution of divested and regulated plants. This can be addressed empirically by

assessing the evidence for differential market conditions across the sample. Second, strict

exogeneity can be violated if the original plant owners under-invested in anticipation of

divestiture. This should manifest as a differential pre-trend which, assuming sufficient

statistical power, can be detected within an event study. Third, SUTVA violations are

a natural concern, because electricity markets are interconnected and the likelihood of a

plant expansion can be affected by the capacity decisions of others within a region. This

threat is a weakness of many empirical studies in electricity and is difficult to overcome

with existing methods. Finally, divestment, as a treatment, can capture the combined

effect of two underlying changes: the effect of a new owner and the effect of new economic

incentives. The relative contribution of each can be explored by leveraging heterogeneity

in the type of divestment that occurred (i.e., a transfer to an unregulated subsidiary of

the original utility versus sale to an un-affiliated entity).

2 Data

The data I use for the analysis comes from three sources: (i) the Energy Information

Administration (EIA), (ii) the Environmental Protection Agency (EPA), and (iii) the

Federal Energy Regulatory Commission (FERC). What follows is a brief description of

the source and construction of the primary variables used in the analysis.
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2.1 Capacity and other characteristics of power plants

The measure of plant-level capacity, and my primary outcome variable, comes from EIA

Form-860 (EIA, 1990-2010b). Beginning in 1990, the annual survey has collected detailed

information about the technical characteristics of all US power plants above 1 MW. In

each year of the panel, I observe the total operable capacity of each power plant, as well

as the underlying characteristics of its generators, such as their age, primary fuel source,

and turbine type. “Operable” generators include those that are actively in-service and

those on standby and exclude those that are retired or under construction. I use the

reported nameplate capacity of each generator, because summer de-rated capacity is not

available consistently for all years of the survey. I limit the sample to plants that, in

1990, were located in the continental US and that were owned by utilities subject to cost-

of-service regulation. I identify regulated utilities using the type of each plant’s owner

in EIA Form-861 (EIA, 1990-2010c), which is an annual census of the activities of US

electric utilities, and limiting to investor-owned utilities that served end-load customers.

Finally, I include only fossil plants that burn primarily coal, oil, or natural gas to generate

power, removing hydroelectric, nuclear, and a small number of geothermal plants from

the sample. I identify fossil plants based on their historic fuel use during the decade prior

to the panel (1980-1990), obtained from EIA Form-759 (EIA, 1980-1990). The resulting

sample has a total of 800 fossil plants, operating in 1990, that were built and initially

owned by regulated utilities.

Table 1 shows the mean characteristics of power plants in the resulting sample, at the

start of the panel. The Cohen’s d statistic provides the standardized difference of means

between the regulated and divested power plants, in (pooled) standard deviation units.

Plants in both arms burn a mix of coal, natural gas, and oil, and are roughly 25 years

old in 1990. Relative to control plants that remain regulated, the mean divested fossil

plant is slightly larger, older, and less likely to have burned coal in the decade prior. A

large share of the divested plants are also located in the Northeast, as shown in Figure

1, reflecting the states that adopted restructuring legislation and required or encouraged

the divestment of power plants by utilities. Finally, it is worth noting the high average

heat rate within the sample.5 The mean value, near 12,000 Btu per kWh, reflects that

the sample contains a mix of plants serving base, intermediate, and peaking load.

2.2 Divestment

I code a plant as divested during the first year in which it reports generation to the EIA

as a non-utility (EIA, 1990-2010d), following the approach in Davis and Wolfram (2012)

and Cicala (2015). Each plant that reported any non-utility generation was considered

a “candidate” divestment, and I then cross-verified the fact and timing of each sale with

5‘Heat rate’ is the inverse of the thermal efficiency of the plant. It captures the amount of fuel a plant
uses as input, in British thermal units (Btu), to produce a single kWh of electricity output. The higher
the heat rate, the less efficient the plant.
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Table 1: Baseline Characteristics of Regulated and Divested Power Plants in the Sample

Regulated Divested Difference Cohen’s d

Count of Plants 527 273
Total Capacity 252,682 159,514

Average Size (MW) 479.47 584.30 -104.83 0.16
Generators per Plant 3.50 4.18 -0.68 0.22
Year In-Service 1966.21 1965.61 0.60 0.06
Reported Heat Rate 12,021.90 12,068.93 -47.03 0.02

Fuel Use, Share for Average Plant:
Coal 39.89 30.31 9.57 0.21
Natural Gas 29.95 33.33 -3.38 0.08
Oil 30.12 36.35 -6.23 0.14
Other (Wood/Waste) 0.04 0.01 0.04 0.06

Generator Types, Share of Average Plant that Uses:
Combined Cycle 1.46 2.19 -0.73 0.06
Steam Turbine 57.72 62.04 -4.32 0.09
Gas Turbine 28.03 32.74 -4.71 0.11
Internal Combustion 12.79 3.03 9.76 0.34
Other Generator 0.00 0.00 0.00 0.05

Plant Location, Share in:
Northeast census region 10.44 44.32 -33.89 0.89
Midwest census region 38.14 16.12 22.02 0.49
West census region 16.89 10.62 6.27 0.18
South census region 34.54 28.94 5.60 0.12

Notes: Fuel use is based on each plant’s annual average consumption between
1980-1990, as reported in EIA Form-759. Heat rates are self-reported by plant
operators in EIA Form-860 in 1990, and the average shown excludes 39 plants
that did not report values.

a second data source, such as SEC filings of the original owner. Because I aim to use

divestments to identify how competitive markets affect capital investment, I exclude any

sales of power plants to a government-owned or cooperative utility, which are subject to

unique forms of regulation. I also remove three power plants whose treatment status was

non-absorbing (i.e., they were sold back to an investor-owned utility or re-regulated). This

left a total of 273 plants that were divested within the sample.

The timing of divestments are shown in Figure 2. Divestments of plants in the sample

are staggered between 1998 and 2008, but the majority (93%) occur between 1998 and

2002. Intuitively, this treatment timing is likely to limit the extent of “problematic com-

parisons” between early and late adopters that would be embedded in a simple two-way

fixed estimate, reducing the possible magnitude of bias (Goodman-Bacon, 2021).
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Figure 1: Spatial Distribution of Regulated and Divested Plants

2.3 Fuel use, generation, and carbon emissions

I use data on power plants’ fuel use, generation, and carbon emissions to help contextualize

the possible welfare effects of a change in investment due to deregulation. I obtain data on

plants’ operation from the EPA Continuous Energy Monitoring System (‘CEMS’) (EPA,

1997-2010). The CEMS data began in 1995 to track compliance among plants regulated

under the federal Acid Rain Program (which aimed to reduce sulfur dioxide emissions

through a cap-and-trade program), though its scope has expanded over time in line with

EPA air quality regulations. The two key strengths of the CEMS data are its granularity

(variables are collected hourly, at the sub-plant level) and quality (it is based on physical

monitors, rather than self-reported data). The trade-off for quality is scope: not all plants

who reported capacity to the EIA were initially required to monitor their operations for

the EPA.

The analysis on plant operations is thus based on a subsample of power plants for whom

complete CEMS data is available. I limit the analysis to plants who reported for all 14
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Figure 2: Timing of Divestments

years of available data (1997-2010) and whose operational data did not contain obvious

measurement error (e.g., reported generation without fuel use). This identified a total of

310 power plants (the ‘CEMS Sub-Sample’) that comprise 72% of the capacity in the full

sample in 1997. Relative to the EIA capacity sample (Table 1), the plants in the CEMS

sub-sample are larger, more efficient, and more likely to burn coal, which reflects the type

of plant included in the initial cohorts of the Acid Rain Program. The mean plant was

around 1 GW in 1990, obtained about 60-73% of its fuel from coal in the decade prior,

and had an average heat rate near 10,500 Btu per kWh. There are also comparatively

fewer control plants in the Northeast.6

2.4 Regulated utility financial data

I use data in the Form 1 filing from the Federal Energy Regulatory Commission (FERC) to

analyze the financial context in which regulated utilities made their investment decisions

(FERC, 1994-2010). Form 1 is an annual filing, available digitally from 1994 onwards,

that is required of all major utilities (annual sales exceed 1 million MWh), and it contains

detailed financial information for the companies’ operations and investments. Among the

utilities which own power plants in the control group in 1990, I limit the sample to the 74

who report to the FERC and who have a full panel of data (i.e., the reporting company

definition is stable from 1994-2010).7 These companies owned 94% of the control plant

6I provide a balance table of mean baseline characteristics, analogous to Table 1, for the CEMS sub-
sample in the Online Appendix.

7Within the sample, it is possible for a utility to own both control and treated plants. This occurs for
one of three reasons: (i) the utility is in a state that required divestment, but the control plant retires
before restructuring occurs; (ii) the utility voluntarily divested one or two of its power plants; or (iii) the
utility is in a state, such as California or New York, where divestment prompted by restructuring legislation
was partial. For the FERC data, I exclude utilities in category (i) and include those in (ii) and (iii) for
whom the majority of plants owned by the utility in 1990 remain regulated.
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capacity at the start of the panel.

3 The Effect of Divestment on Capital Investment

This section provides the results of the main analysis: the effect of competition on cap-

ital investment into fossil power plants, estimated using a difference-in-difference model

(Equation 1). The results proceed in three steps. Section 3.1 provides descriptive evidence

for how regulated and divested plants evolved over time. Section 3.2 then estimates the

difference-in-difference and converts the effect of divestment on capacity into an equivalent

dollar amount of investment. Finally, Section 3.3 addresses the different validity threats

that could undermine the causal interpretation of the coefficient. Figure 3 provides a visual

summary of the coefficient estimates and 95% confidence intervals across specifications in

this section.

Figure 3: Visual Summary of Treatment Effect Estimates and 95% Confidence Intervals

Notes: Standard errors are clustered at the plant level. The ‘Two-Way Fixed Effect’ and ‘Stagger-Robust’
groups correspond to Table 2; the ‘Refined Samples’ to Table 4; and the ‘Heterogeneity by Plant Type’ to
Table 3. As shown in Table 3, plants that serve baseload, intermediate, and peak load have different mean
sizes, which affects the interpretation of the relative reduction in size from the absolute effects charted here.

3.1 Descriptive Evidence

The mean evolution of power plant capacity among divested and regulated plants is shown

in Figure 4. Two points are evident. First, divested and regulated plants appear to evolve

similarly in the pre-period, with minimal change in plant capacity prior to 1998 when

divestments begin, as demarcated by the gray dotted line. This supports the validity of

the difference-in-difference design. Second, divested and regulated plants evolve differently

in the post-period: the mean deregulated plant becomes smaller, while the mean regulated

plant becomes larger.
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Figure 4: Mean Plant Capacity by Treatment Arm and Year

(a) Calendar Time (b) Event Time

This difference is driven primarily by infra-marginal changes in plant size–that is, a plant

adds a generator or uprates its capacity, and vice versa–rather than plant retirements.

Divested and regulated plants retire at similar rates, with 19% and 17% of plants retired

by 2010, respectively.8 Instead, divested plants are more likely to become slightly smaller;

in 2010, 34% of divested plants had operating capacities below their starting size, 6% more

than the equivalent distribution among regulated plants. Regulated plants are more likely

to expand; 20% of regulated plants were larger by 2010, 7% more than divested. I also

note that there are three clear outlier additions in the sample, all of which happen to be

regulated plants owned by one utility, Florida Power and Light: the Fort Meyers, Sanford

and Martin plants each more than doubled in size by 2010, equivalent to adding 1.5-2.5

GW of new capacity per plant. Later in the results, I will show the robustness of the effect

to excluding these three outliers.

The change in regulated plant capacity is driven by generators that use natural gas. In

2010, 30% of regulated plant capacity reported natural gas as its first energy source, up

11 percentage points over 1990. (Among divested plants, the distribution of capacity

reporting natural gas, oil, or coal as its first energy source remains relatively stable over

time.) Notably, plants in both arms see a similar rate of adoption of combined cycle

generators in the post-period (Figure 5a, shown as a percent of operable capacity). Finally,

despite the decline in the mean plant size, the mean age of divested plants still decreases

in the post-period (average in-service year increases–Figure 5b). In other words, the

mean divested plant is “newer,” without adding new capacity. This implies that divested

plants retire older generators, such that the composition of generators shifts towards newer

capacity within the plant.

8Regulated plants that retire are, on average, smaller in size, relative to both the mean of all regulated
plants and the mean size of divested plants which retire. Given this, I will show a sample specification that
includes only plants which remain operable throughout the panel, excluding retirements in both arms.
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Figure 5: Change Combined Cycle Generators and Plant Age Among Operable Capacity

(a) Share of Combined Cycle (b) Mean Plant Age

3.2 Difference-in-Difference Estimates

Table 2 shows the results of the difference-in-difference model (Equation 1). Divestment

leads to a reduction in plant capacity of 47 MW per year, on average. This effect is

equivalent to an 9.1% reduction in plant capacity, relative to the mean plant size among

untreated observations (Column 2).9 The treatment effect is precisely estimated and does

not appear to be driven by plant retirements (excluded in Column 3) nor the three outlier

expansions among the regulated plants, owned by Florida Power and Light (excluded in

Column 4). As mentioned earlier, the simple two-way fixed effect estimate in Column

(1) can be biased if the treatment effect is heterogeneous, due to the staggered nature

of divestment timing. However, stagger-robust estimators provide a similar treatment

effect estimate to the two-way fixed effect model, suggesting the likelihood of bias is low

(Columns 5-7).

Fossil power plants are designed to meet different portions of electricity demand, based

on the underlying generator technology used. For example, steam turbines that burn coal

have a low average cost when operated consistently, but are slow to increase generation;

plants that use them usually serve “base” load and will generate throughout the year.

In contrast, internal combustion or gas turbines that burn oil or natural gas can ramp

generation quickly but incur high marginal costs to do so; plants that use these generators

are typically “peaking” capacity that will operate infrequently, during the hours with

the highest demand. In Table 3, I examine if the effect of divestment is heterogeneous

across plants that share similar operating fundamentals. I assign plants to one of three

categories, based on the type of load a plant is likely to serve as a function of its baseline

characteristics.10 I find that the effect of divestment is consistently negative and significant

9Note that 9.1% is obtained by transforming the coefficient from the Poisson model using: (1 −
exp(β̂pois)) ∗ 100.

10Fuel use and operation at the plant level can be quite complex and defy simple categorization, due to
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Table 2: The Effect of Divestment on Operating Capacity

Operating Capacity (MW)
Full Sample Drop Retirements Drop Outliers Stagger-Robust

(1) (2) (3) (4) (5) (6) (7)
OLS Poisson OLS OLS Gardner Stacked C&S’A

Divested -47.06∗∗∗ -0.0875∗∗∗ -41.09∗∗∗ -40.49∗∗∗ -49.22∗∗∗ -35.72∗∗∗ -41.53∗∗∗

(10.29) (0.0186) (9.902) (9.576) (11.85) (8.604) (11.524)

Squared Correlation 0.97123 0.97190 0.97737 0.97574 – – –
Observations 16,800 16,800 13,902 16,737 16,800 49,096 16,800
Dependent variable mean 521.94 521.94 610.20 515.43 – – –

Plant fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: Standard errors are clustered at the plant level. The sample in Column (3) includes only plants that
remain operable at the end of the panel. The sample in Column (4) excludes the three largest absolute
expansions–Fort Meyers, Sanford and Martin power plants, owned by Florida Power and Light–from the
control group. Column (5) is estimated using the two-stage difference-in-difference estimator proposed by
Gardner (2022). Column (6) is estimated using the stacked estimator as proposed by Wing, Freedman
and Hollingsworth (2024). The stacked estimator in Column (6) uses 8 pre-periods and 8 post-periods
and includes only plants that were divested in 1998-2002. Column (7) is estimated using Callaway and
Sant’Anna (2021), and the aggregate coefficient shown is the average of the mean treatment effect for each
timing group. *** indicates significance at the 1% level, ** indicates significance at the 5% level, and *
indicates significance at the 10% level.

across plant types, but that it has a relatively larger effect on the size of plants that initially

served intermediate and peaking load versus those that served base load. This suggests

that the magnitude of the effect of deregulation on capacity may be mediated by the

specific way a plant’s economics are affected by a competitive market structure.

An event study shows that divested plants do not receive statistically different investment

in the pre-period, prior to sale (Figure 6). The figure includes both the simple two-

way fixed effect estimate, as well as a stagger-robust estimator (Gardner, 2022). This

supports the assumption that parallel trends hold in the pre-period. In addition, the

event study is sufficiently powered to identify economically meaningful violations of this

assumption (Roth, 2022). A pre-trend with slope 2.56 MW per year and 0.65 MW per

year would be identified 99% of the time under the two way fixed effect and stagger-robust

event studies, respectively–both of which are much smaller than the estimated treatment

effect in the post-period (47 MW per year). This suggests the risk of confounding due

to an un-identified pre-trend is minimal. Finally, in the post-period, Figure 6 shows that

the effect of divestment on capacity is dynamic and grows larger the longer a plant has

been deregulated. (The overall coefficient of 47 MW per year, from Table 2, should be

interpreted as, in any given year, after divestment, a deregulated plant is on average 47

MW smaller, relative to its regulated peers.)

the many permutations with which generators of different types can be combined within a single plant.
For example, it is not uncommon for a coal plant, which I assign to the “baseload” type, to have a single
gas turbine generator that it uses in a peaking capacity. As a result, these categories should be viewed as
a coarse but well-informed guess as to the operating profile of the plant overall, as a way to group plants
that share similar fundamentals. In Section 3.3, I use a nearest neighbor matching methodology that is
better able to accommodate idiosyncrasies in plant design. Finally, I caveat that plant type is endogenous
over time and can change based on the addition or retirement of specific generators.
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Table 3: Heterogeneous Effects by Plant Type

Operating Capacity (MW)
Baseload Intermediate Peaking

(1) (2) (3) (4) (5) (6)
OLS Poisson OLS Poisson OLS Poisson

Divested -31.52∗∗ -0.0359∗∗ -93.21∗∗∗ -0.1461∗∗∗ -11.94∗∗ -0.1301∗∗∗

(13.88) (0.0159) (25.53) (0.0388) (4.947) (0.0501)

Squared Correlation 0.98330 0.98344 0.91856 0.92208 0.96123 0.96746
Observations 6,048 6,048 4,788 4,788 5,964 5,964
Dependent variable mean 878.46 878.46 608.93 608.93 90.557 90.557

Plant fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Plant N 288 228 284
Divested N 81 106 86

Coal (%) 97.62 3.9 0.48
Natural Gas (%) 1.34 65.88 33.41
Oil (%) 0.96 30.23 66.1

Steam Turbine (%) 96.15 85.84 0.34
Gas Turbine (%) 3.48 8.1 73.45
Internal Combustion (%) 0.15 0.46 26.12

Notes: Standard errors are clustered at the plant level. Plant type is assigned based on a plant’s historic fuel
use in the decade prior to the panel (1980-1990), as reported in EIA Form-759, as well as the technology of
its generators, as reported in EIA Form-860. Further details are provided in the Online Appendix. The coal,
natural gas, and oil percentages report the average use of each fuel, at the plant-level, between 1980-1990,
as reported in EIA Form-759. The steam turbine, gas turbine, and internal combustion turbine percentages
report the average share of each generator type, at the plant-level, in 1990, as reported in EIA Form-860. ***
indicates significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance
at the 10% level.

The decrease in capacity translates into a meaningful magnitude of avoided investment

that otherwise would have been recovered in electricity rates. For example, in 2010, the

EIA estimated that capital costs for new combined cycle plants were around $1,273 per

kW ($ 2023).11 The overall treatment effect on capacity (47 MW per year) thus implies

avoided investment of $59.9 million per plant and year ($34.2-$85.7 million for the 95%

confidence interval), if the counter-factual addition would have been a combined cycle

generator. Under a simplified assumption that all additions would have been combined

cycle, this equates to a total of $16.4 billion ($9.3-$23.4 billion) in avoided investment,

each year, across the cohort of 273 divested plants.12 While this is only a back-of-the-

envelope estimate, because actual investment is unobserved once a plant is deregulated,

the exercise helps contextualize the magnitude of savings in capital investment, relative to

operational savings that have been quantified previously in the literature. Most recently,

Cicala (2022) estimated that competitive dispatch of power plants within wholesale power

11This value is obtained from EIA (2010a). The choice to use costs at the end of the panel is intentionally
conservative; technology costs for power plants tend to decrease over time.

12The equivalent range for scrubbed coal ($2951 per kW) capacity is $21.6-$54.2 billion, and $6.4-$16.1
billion for combustion turbines ($876 per kW). All values are given in $ 2023.
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Figure 6: Event Study of the Effect of Divestment on Plant Capacity

markets led to a reduction of production costs in generation of around $3-5 billion dollars

per year. The findings here suggest that reductions in capital investment are likely an order

of magnitude higher–greatly expanding our understanding of the total cost reductions

achieved by competitive markets in electricity generation in the United States.

3.3 Threats to Validity

A central identifying assumption of the difference-in-difference design is that regulated

power plants form an appropriate counter-factual for the level of capital investment di-

vested plants would have received, but for the change in market structure. While the event

study provides evidence that the parallel trend assumption likely holds in the pre-period,

there are a few reasons why one might imagine that regulated plants evolved differently in

the post-period, separate from the effect of regulation. First, regional differences in load

growth or entry of new capacity could confound the observed differences in plant capaci-

ties, given the underlying spatial distribution of divested and regulated plants (Figure 1).

That is, the growth in regulated plants could reflect differential changes in demand in their

regions; similarly, the contraction in divested plants could result from differential rates of

entry, crowding out the need for more capacity. However, I observe similar patterns of

both load growth and entry among divested and regulated plants in the sample, as shown

in Figure 7. On the whole, regulated plants tend to be located in states with less load

growth and higher rates of entry in the post-period,13 which would lead one to expect

13MacKay and Mercadal (2024) find a similar result regarding entry, when aggregating to the level of
regulated and deregulated utility territories.
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fewer expansions among these plants–the opposite of what is observed.14

Figure 7: Regional Trends for the Mean Plant by Treatment Arm

(a) Demand (b) Entry

Note: The figure shows the weighted-average outcomes, at the state-level, where weights are defined by
the share (count of plants) in each state, by treatment arm. State is used as a simple way to define the
market conditions in which each plant operates. The “Slope” term is the average change in TWh per year
between 1998-2010 (the post-period). Entry is calculated as the share of capacity that comes online each
year, as a percentage of all operable capacity within the region.

Separately, baseline differences in plant technologies could differentially affect plants’ abil-

ities to withstand fuel price shocks in the post-period, thereby impacting profitability and

the owner’s resulting investment decisions. Of particular concern is the experience and

trajectory of natural gas prices during 2000-10 (Joskow, 2013). During this decade, prior

to the rise of shale gas, prices at the Henry Hub both rose and became more volatile,

spiking multiple times above $10 per MMBtu, relative to a baseline near $2.50 in 1999.

Divested plants are more exposed to natural gas, at baseline, than their regulated coun-

terparts (Table 1), suggesting they could be differentially vulnerable to gas price swings

in the post-period. The average divested plant is also slightly older and less likely to use

combustion turbines than their regulated peers. It is possible these differences could con-

found the estimated treatment effect, to the extent that they are predictive of differential,

time-varying trends in investment in the post-period.15

To explore the role that plant characteristics may play, I use two strategies to refine the

sample and curate control plants that are most similar to the divested plants, at base-

14One might be tempted to include load and entry as covariates in the two-way fixed effect model in
Equation 1, to test the stability of the treatment effect estimate to these confounds. However, recent
methodological literature has noted that an easily-interpretable treatment effect is not identified when
time-varying covariates are included in a difference-in-difference setting, unless one is willing to make the
strong assumption that the covariates are unaffected by the treatment (Caetano and Callaway, 2023).
In this context, while it is unlikely that the divestment of an individual plant affects demand or entry
in the state in which the plant operates, divestments are highly correlated with state-level restructuring
legislation, for which the independence assumption is less tenable (Borenstein and Bushnell, 2015).

15Time-invariant differences will naturally be absorbed in the plant fixed effect.

18



line: re-weighting regulated plants according to the inverse propensity-score, and using

only a fixed number of the most similar (“nearest neighbor”) regulated plants as the

counter-factual, for each divested plant. The former is similar to the double-robust esti-

mator proposed by Callaway and Sant’Anna (2021) while the latter mirrors the matched

difference-in-difference strategy employed by Cicala (2015); MacKay and Mercadal (2024);

Deryugina, MacKay and Reif (2020) and defined formally by Imai, Kim and Wang (2023).

The propensity score is estimated using a logit model of divestment on the age, capac-

ity, heat rate, and fuel mix of each plant in 1990, and 5 nearest neighbor matches are

identified using an equally-weighted distance metric of the log of capacity, fuel mix, and

the plant’s generation profile (share of generation by month).16 As shown in Table 4, the

magnitude and precision of the estimated treatment effect remains stable when refining

the control plants to those that are most similar to divested plants. This suggests that

baseline differences in the observed characteristics are not confounding the estimated effect

of deregulation on plant capacity.

Table 4: Sensitivity of Results to Differences in Baseline Plant Characteristics

Operating Capacity (MW)
IPS Weights Nearest-Neighbor

(1) (2)

Divested -45.68∗∗∗ -59.55∗∗∗

(11.27) (15.69)

Squared Correlation 0.97114 0.96950
Observations 16,716 13,860

Plant fixed effects ✓ ✓
Year fixed effects ✓ ✓

Notes: Standard errors are clustered at the plant level. In Column (1), “IPS” stands for inverse-propensity
score. In Column (2), divested plants are matched to their 5 most-similar controls. *** indicates significance
at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level.

A different validity threat concerns treatment assignment. If a utility had the ability to

choose which plants to divest, we might be concerned that the company opted to only

sell those power plants that were the equivalent of “lemons.” Importantly, the fear here

is that the firm would have private knowledge about plant characteristics that would be

unobservable to buyers (or to researchers ex-post). This story would be compatible with

the observed decline among divested plants; post-sale, the lower quality of the plant would

be revealed to the new owner, who might become less willing to invest in the plant moving

16For the inverse propensity-score weights, all divested plants receive a weight of 1, while control plants
are weighted according to êp/(1− êp), where ê is the estimated propensity score. For the nearest-neighbor
control sample, the model is estimated using pooled OLS, where control plants are re-weighted according
to the frequency with which they are chosen. The two strategies achieve similar improvements in balance
within the sample; the key difference is that all regulated plants are included as controls within the inverse-
propensity score model (but may have a weight of 0), while only selected plants are included in the matched
approach (and may be included in the counter-factual for multiple divested plants).
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forward. Intuitively, we would expect selection bias to be minimal when utilities were

required to divest their generation assets (i.e., when there was no choice available to the

firm regarding which specific plants to sell).

Table 5 leverages heterogeneity in state restructuring policy to split divested plants into

three groups: those in states which passed policy requiring the deregulation of all fossil

assets (Column 1); those in states where policy only required partial divestment, or where

divestment was encouraged but not required (Column 2); and those in states without any

legislation that sought to restructure generation (Column 3). Owners of plants in both

Columns 2 and 3 had a degree of choice over whether and which plants to sell. The

results show a larger effect of divestment on capacity among plants where divestment was

partial or encouraged (Column 2), suggesting selection may play a role in these regions.17

However, I also find that the treatment effect among plants where divestment was required

(Column 1) is similar in magnitude and precision to the overall treatment effect in Table

2. This implies that, if selection effects are present, they do not dominate the overall

treatment effect estimate presented in the main specification.

Table 5: Exploring Concerns About Selection Into Divestment

Operating Capacity (MW)
Required Partial or Voluntary No Legislation

(1) (2) (3)

Divested -41.40∗∗∗ -77.19∗∗∗ 29.45
(10.24) (24.03) (38.16)

Squared Correlation 0.97575 0.96982 0.97589
Observations 14,868 12,768 11,298
Dependent variable mean 506.80 518.64 499.60
N Divested Plants 181 81 11
States CT, MA, MD CA, DE, IL DC, IN, LA,

ME, NJ, OH IL, MI, NY MT, VA, VT,
PA, TX WA

Plant fixed effects ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓

Notes: Standard errors are clustered at the plant level. State coding relied primarily upon Andrews (2000);
FTC (2000) and individual state’s regulation, as needed. Treated plants in each model are limited to those
that fall in the states specified. *** indicates significance at the 1% level, ** indicates significance at the
5% level, and * indicates significance at the 10% level.

Finally, the treatment effect for divested plants that were sold will capture the combined

effect of two underlying changes: exposure to new economic incentives and to a new

owner. One concern is that the observed effect of divestment may be driven entirely by

the effect of ownership, rather than incentives, such that attributing the reduction solely

to competitive markets would be inappropriate. To explore the relative contribution of

17Interestingly, I find no effect of divestment among plants in states without legislation (Column 3);
however, the number of divested plants is very small in this subgroup.
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each factor, I re-estimate the effect separately among divested plants that were transferred

to an affiliate of the original owner and among plants that were sold to an unaffiliated

entity (Table 6). Plants that were transferred remain within the same parent company as

the original, regulated utility, such that we would expect the effect of new ownership to be

minimal, whereas plants that were sold will reflect both changes. The results show that

the effect of divestment is larger among plants that were sold, indicating that a change in

ownership contributes to the observed reduction in investment. However, the treatment

effect among plants that were transferred is similar in magnitude to the overall estimate

(Table 2), which suggests that the change in economic incentives is responsible for the

majority of the observed effect of divestment.

Table 6: Separating the Effects of Incentives and Ownership

Operating Capacity (MW)
Transfer Sale

(1) (2)

Divested -41.95∗∗∗ -57.77∗∗∗

(10.92) (17.51)

Squared Correlation 0.97606 0.96994
Observations 14,112 13,755
Dependent variable mean 508.61 516.72
N Divested Plants 145 128
Plant fixed effects ✓ ✓
Year fixed effects ✓ ✓

Notes: Standard errors are clustered at the plant level. ‘Transfer’ includes divested plants that were trans-
ferred to a company that is an unregulated affiliate of the original utility. ‘Sale’ includes divested plants that
were sold to a different entity that was not associated with the original owner. *** indicates significance at
the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level.

4 Plant Operation and Welfare Implications

The results in Section 3 show that divestment leads to a large and robust decrease in capital

investment among fossil power plants. However, avoided investment does not necessarily

represent a welfare gain. This is because the investment, in addition to changing the size

of the plant, can also affect how it operates. For example, a new generator is likely to be

more fuel efficient than older technologies. This might allow a power plant, all else equal,

to burn less fuel while generating the same amount of electricity. A new generator may

also allow a plant to burn a different fuel, such as natural gas instead of coal. This is

particularly relevant in our setting, because most new generators at regulated plants were

natural gas-fired (Section 3.1). Because natural gas is roughly half as carbon intensive as

coal, the investment might significantly reduce carbon dioxide emissions from the plant.

Thus, before concluding that the decrease in capital investment among divested plants

represents a social benefit, we need to assess if the change led to any corresponding loss

in operating performance.
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In Table 7, I use data from the EPA for a sub-sample of 310 plants (72% of capacity), from

1997 onwards, to assess the effect of divestment on how plants operated. (The ‘CEMS

sub-sample’ is explained further in Section 2.3.) Each coefficient is obtained from a two-

way fixed effect regression, following the main specification in Equation 1, and Figure 8

graphs the corresponding mean of each outcome. (In the Online Appendix, I show the

results are not sensitive to the use of stagger-robust estimators.) Before moving to the new

operational outcomes from EPA data, I first re-estimate the effect of divestment on plant

capacity, to assess the stability of the coefficient between the full and sub-samples (Column

1). I find the effect is nearly identical in magnitude, sign and precision, suggesting plants

in the sub-sample are, on average, representative of changes in investment within the full

sample.

Table 7: Changes in Plant Operation due to Divestment in CEMS Sub-Sample

Capacity Capacity Factor Operating Hours Heat Rate CO2 Intensity CO2 Emissions
(1) (2) (3) (4) (5) (6)

Panel A: Outcomes in Levels

Divested -45.22∗∗∗ 0.3535 -581.2∗∗∗ -16.68 -0.1487 -101,393.4
(14.53) (1.506) (171.0) (145.1) (1.209) (110,018.6)

Mean Outcome 994.70 53.666 7,518.2 10,619.4 91.422 4,596,126.6
Squared Correlation 0.97499 0.87510 0.78904 0.67788 0.89390 0.97985
Observations 4,340 4,340 4,340 4,340 4,340 4,340

Panel B: Logged Outcomes

Divested -0.0445∗∗ -0.0149 -0.1392∗∗∗ -0.0027 -0.0039 -0.2046∗∗∗

(0.0192) (0.0387) (0.0485) (0.0124) (0.0134) (0.0726)

Squared Correlation 0.98397 0.85552 0.74064 0.69597 0.84727 0.92626
Observations 4,337 4,337 4,340 4,340 4,340 4,340

Plant fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Notes: Standard errors are clustered at the plant level. Sample is limited to the 310 plants in the CEMS
sub-sample. Capacity is obtained from the EIA, while all other outcomes are from the EPA. The units for
capacity are MW; for capacity factor are percentage points; for heat rate are MBtu of heat input per MWh
of gross generation; for CO2 intensity are short tons per MBtu; and for CO2 emissions are short tons. ***
indicates significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance
at the 10% level.

Moving from left to right in Table 7, I first assess how divestment affected the total

generation of a plant (Columns 1-3), before estimating the impact on how the plant used

fuel (Columns 4-5), and ending with the net effect on the total carbon dioxide emissions

(Column 6). These six variables, including capacity, have the convenient relationship that:

CO2,t = Generationt ·HeatRatet · CO2Intensityt (2)

= {Capacityt · (CapacityFactort|Op.) ·OpTimet} ·HeatRatet · CO2Intensityt

(3)

= {MWt ·
MWht

MWt ∗Hourst
·Hourst} ·

MBtut
MWht

· stt
MBtut

(4)
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In other words, the total carbon emissions from a plant (Column 6) can be obtained from

the product of its capacity, capacity factor, operating time, heat rate and the carbon

intensity of its fuel mix (Columns 1-5). It follows, by taking the log of both sides of the

equation, that the percentage change in carbon emissions is approximately equal to the

sum of the percentage change in the other factors. This is shown in Panel B of Table 7,

which reports coefficients from log-linear, two-way fixed effect specifications.

Starting with how much plants generate, I find that divestment reduces the number of

hours a plant operates: operating time declines by approximately 13.0%, after deregulation

(around 581 hours each year) (Column 3 and Figure 8c). This result suggests that divested

plants may have been dispatched less frequently within competitive market structures.

However, I do not find that divestment affects the rate at which the plant produces power

in the hours when it does operate. This is captured by the capacity factor (Column 2

and Figure 8b), which normalizes how much generation each unit of capacity produces, on

average, within a given hour.18 The null result indicates that divestment does not affect

the average productivity of plants, once operating. The combined effect of the changes in

capacity and operating time is an overall decrease in annual generation among divested

plants, relative to regulated, of approximately 18.0%, on average.

Turning to fuel use, I find no effect of divestment on the annual average heat rate of

plants nor the carbon intensity of their fuel mix (Columns 4-5 and Figures 8d-8e). Both

results are somewhat striking. Heat rate quantifies the amount of fuel a plant needs to

burn as input, to produce each unit of output. It thus measures the thermal efficiency of

the plant–the heat rate declines (less fuel, per unit output) when fuel efficiency improves–

and, as described earlier, is expected to be lower among newer technology. As shown

in Figure 8d, both divested and regulated plants demonstrate markedly similar gains in

average heat rates over time. This suggests that the expansions at regulated plants did

not lead to a disproportionate gain in the overall thermal efficiency of the plants, and that

divested plants were able to achieve similar efficiency improvements, with less apparent

capital input. Similarly, the carbon intensity of the plant’s fuel mix would decline if a

plant switched from coal towards natural gas. The fact that there is no detectable change

in the carbon intensity of heat input among divested and regulated plants indicates that

the natural gas additions at regulated plants did not substantially displace their use of

coal. The end effect is an overall decrease in carbon emissions, after divestment, of about

18.5%, driven nearly entirely by the relative reductions in capacity and operating time.19

18For example, a 50 MW plant with a 10% capacity factor would generate 5MWh of electricity in one
hour. Here, I have defined the capacity factor to be conditional on operation, meaning that the capacity in
the denominator is multiplied by the number of hours the plant operates within a year, rather than 8,760
(the total number of hours in a non-leap year). This is shown in Equation 4.

19Why is there no detectable effect on the level of carbon dioxide emissions, in Panel A? As a variable,
the mass of carbon dioxide emissions has a large range across plants in the sample: a power plant at the
75th percentile of emissions would have released over five times more carbon than a plant at the 25th in
1997. As shown in Figure 8f, the mean level of carbon emissions–which will be affected by high-emitting
plants–is relatively stable over time and similar between groups, providing the intuition for the insignificant
coefficient in Panel A. The decrease in carbon dioxide is instead concentrated among lower-emitting, infra-
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Figure 8: Mean Operational Outcomes Among CEMS Sub-Sample

(a) Capacity (b) Capacity Factor

(c) Operating Time (d) Heat Rate

(e) Carbon Intensity of Fuel (f) Carbon Dioxide Emissions

One concern about the above results is that the impact of new natural gas generators

among regulated plants may have been muted, due to the specific (high) realization of

natural gas prices in the post-period. As a result, natural gas generators may have been

less economic to run during these years, in a way that would not reflect their long-term

marginal plants, whose generation declines as they operate less.
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economics after prices fell due to fracking. Luckily, we are able to learn something about

plant behavior during “low” natural gas prices by limiting our attention to the final two

years of the panel, 2009-10, when the annual average Henry Hub price fell to $3.94 and

$4.37 (compared to $8.86 in 2008; all values in nominal $ per MMBtu). Even when allowing

for a differential treatment effect during low (2009-10) and high (2008 and earlier) natural

gas prices, I still do not find a statistical difference in average heat rates or carbon intensity

among regulated and divested plants (Table 8). While the share of generation from natural

gas was 2.97 percentage points higher among regulated plants under low prices (Column

5), this marginal increase was not large enough to detectably shift the overall carbon

intensity nor thermal efficiency at the plant-level.20

Table 8: Sensitivity of Operational Outcomes to Natural Gas Prices

Heat Rate CO2 Intensity % Natural Gas
Level Log Level Log Level
(1) (2) (3) (4) (5)

Divested (Low NG Prices) -15.12 -0.0006 0.6824 0.0078 -2.970∗

(192.4) (0.0168) (1.500) (0.0158) (1.779)
Divested (High NG Prices) -17.03 -0.0032 -0.3382 -0.0065 -0.8114

(141.4) (0.0120) (1.158) (0.0131) (1.181)

Squared Correlation 0.67788 0.69598 0.89397 0.84735 0.96377
Observations 4,340 4,340 4,340 4,340 4,340
Mean Outcome 10,619.4 9.2618 91.422 4.4894 24.173

Plant fixed effects ✓ ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓ ✓

Notes: Standard errors are clustered at the plant level. Sample is limited to the 310 plants in the CEMS
sub-sample. ‘Low NG Prices’ limits the post period years to 2009, and ‘High NG Prices’ includes all post
years in 2008 and earlier. ‘% Natural Gas’ is the share of generation using natural gas as the primary fuel.
The units of heat rate are MBtu of heat input per MWh of gross generation; of CO2 intensity are short
tons per MBtu; and ‘% Natural Gas’ are percentage points. *** indicates significance at the 1% level, **
indicates significance at the 5% level, and * indicates significance at the 10% level.

It’s worth noting that the CEMS data does not help us identify the effect of divestment on

the operation of peaking plants, specifically, which comprise an estimated 5.72% of capacity

in the full sample in 1990. The sub-sample studied here consists primarily of plants that

would serve base and intermediate load, based on the frequency of their operation at

baseline. (The mean plant operated for 7,646 hours–87% of the year–in 1997, and only 9%

of plants operated for half the year or less.) It is difficult to anticipate if divestment would

affect peaking plants differently than those serving base or intermediate load. On the one

hand, peaking plants already operate infrequently during the year, such that they may be

20Cullen and Mansur (2017) find evidence of meaningful coal-to-natural gas switching among US power
plants, in response to natural gas price fluctuations. I note that this paper asks a slightly different analytical
question–not, “Did plants switch?”, but, “Did divested plants switch by a greater amount than regulated
plants?”–and studies a more limited sample of power plants (only those owned by regulated utilities and
operating in 1990).
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less likely to experience the changes in operating time observed here. On the other hand,

because heat rates are nonlinear and increasing at low levels of generation, it’s possible

any small shift in operating time among peaking plants could differentially affect their

average thermal efficiencies. Given this, how deregulation may affect peaking plants, in

particular, remains an open question for future work.

Overall, these findings suggest that the decrease in capacity among fossil power plants, due

to divestment, can be interpreted as a likely social benefit. The considerable savings for

consumers in avoided investment–on the order of $9.3-$23.4 billion per year–do not appear

to be offset by any evident degradation in plant operation among divested plants. While

divestment does lead fossil plants to operate less frequently,21 there is no observable change

in plants’ rate of generation nor their thermal efficiency, nor is there a relative increase in

the carbon intensity of their fuel mix. An equivalent way to frame these results is that I

do not observe a meaningful gain in the performance of regulated plants, the social value

of which might have offset the higher cost of capacity additions.

5 Averch-Johnson and External Validity

Economists have long noted that cost-of-service regulation can lead a firm to over-allocate

production inputs towards capital. This is referred to formally as the “Averch-Johnson

effect,” after the eponymous authors of the original model (Averch and Johnson, 1962),

and colloquially in electricity as “gold-plating” the grid. In Section 3, the effect of di-

vestment on capacity is identified, in part, on counter-factual additions observed among

regulated power plants. In this section, I demonstrate that this higher level of invest-

ment by regulated utilities coincided with the conditions under which theory predicts the

Averch-Johnson effect is most likely to emerge. This affects how we interpret the estimated

effect of divestment and the likelihood it would be externally valid for other generating

technologies, such as renewables.

The intuition for these conditions rests on a difference between how Averch and Johnson

modeled cost-of-service regulation and how it is implemented by US states to govern

electric utilities. The Averch-Johnson model assumes that the regulator fixes the return

on investment a firm earns. In practice, states regulate electric utilities’ price, rather

than their return (Lazar, 2016). Policymakers do use a “regulated” return as an input to

determine prices within a rate case, but once the price is fixed, regulators do not control

nor oversee the actual returns utilities achieve. As Paul Joskow showed, under this set-up,

the regulated return is most likely to act as a binding constraint during periods when the

utility’s average production costs are increasing (Joskow, 1974). It follows that Averch-

Johnson style effects–or, an increase in capital investment by utilities–are most likely to

be observed when utilities’ average costs are rising.

21I note that this result is specific to the type of power plant (fossil) studied here. Davis and Wolfram
(2012), for example, find that divested nuclear plants operate more frequently.
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In Figure 9 and Table 9, I use financial information reported by regulated utilities to the

FERC to assess how their operating costs evolved over the course of the panel. The sample

consists of 74 regulated utilities who own control plants in the sample and who report

consistently to the FERC (Section 2.4). The analysis shows that average production costs

increased significantly during the post-period. The utilities’ operating expenses began to

rise around 2000 (Figure 9a), leading average production costs to be 33.6% higher, across

the sample, from 1998-10 (Figure 9b and Column 4 of Table 9).22 In line with Joskow’s

prediction (Joskow, 1974), we observe a coincident and significant increase in overall capital

investment: the utilities’ invested 31.1% more on average, each year, during the post-

period, when production costs were higher (Figure 9c and Column 6 of Table 9). These

changes led to a decrease in estimated returns on investment earned by the companies,

from a high of 8.9% in 1995-96 to 6.4% in 2010 (Figure 9d). Taken together, the data and

theory indicate that the Averch-Johnson effect likely biased the investment decisions of

regulated utilities during the post-period.

Table 9: Change in Regulated Utility Operating Costs and Investment

Operating Expenses ($ mil) Average Cost ($/kWh) Net Plant Investment ($ mil)
(1) (2) (3) (4) (5) (6)
OLS Poisson OLS Poisson OLS Poisson

Post-Period (1998-2010) 610.2∗∗∗ 0.4270∗∗∗ 0.0238∗∗∗ 0.2899∗∗∗ 810.5∗∗∗ 0.2707∗∗∗

(73.52) (0.0314) (0.0025) (0.0288) (112.4) (0.0244)

Squared Correlation 0.85844 0.87785 0.62497 0.63776 0.88982 0.89939
Dependent variable mean 1,612.2 1,612.2 0.08916 0.08916 3,226.8 3,226.8
Observations 1,258 1,258 1,255 1,255 1,258 1,258

Utility fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Notes: Standard errors are clustered at the utility level. *** indicates significance at the 1% level, **
indicates significance at the 5% level, and * indicates significance at the 10% level.

Given this evidence, one way to view the treatment effect estimated in Section 3 is as a

measure of the magnitude of the Averch-Johnson effect within electricity generation–that

is, it captures what happens to investment in fossil power plants when the distortion is

removed, relative to a competitive baseline. This interpretation can inform how we view

the likely external validity of the treatment effect to other generating technologies. The

Averch-Johnson distortion is not limited to investment in any one specific type of power

plant, and as a result, it suggests that the effect of regulation identified here–that regulated

fossil plants are on the order of 9.1% larger, on average (Table 2)–is more likely to hold

for other generating technologies, such as solar and wind, given similar cost conditions

for utilities.23 In other words, the results suggest that there is a risk that regulation may

inflate the level of investment in new renewable power plants, just as it did among existing

fossil plants.

22The spike in 2000 is driven by an increase in purchased power costs, observed across utilities (i.e., it
does not appear to be driven by a single company).

23In a recent paper, I showed that the increase in operating costs for regulated utilities has continued
beyond 2010 and affected companies nationally, beyond those in this particular sample (Yozwiak, 2023).
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Figure 9: Assessing if the Averch-Johnson Effect Distorted Regulated Utility Investment

(a) Inputs to Average Production Cost (b) Average Production Cost

(c) Inputs to Return on Investment (d) Return on Investment

Notes: All data is obtained from FERC Form 1. The sample consists of 74 utilities who own control
plants in the sample and who report consistently to the FERC. Operating expense is total of operation
and maintenance costs, amortization, depreciation, and taxes, net of deferrals and adjustments. It captures
the amount of operating costs a utility would recover within regulated rates, prior to any adjustments by
regulators. Average cost is operating expense divided by total sales. Net plant investment is the total
un-depreciated value of capital investment made by the utility across functions. It represents the investment
on which a utility would earn a return within regulated rates, prior to any adjustments by regulators. Net
income is the difference between revenue and operating expense. The return on investment is net income
divided by net plant investment. The values shown are the mean outcome across the sample. The average
production cost is given in nominal dollars (Joskow, 1974), because regulated prices do not typically contain
inflation adjustments. An equivalent chart in real dollars is provided in the Online Appendix.

6 Conclusion

How do competitive markets affect capital investment? In this paper, I document that

competitive reforms led to a large and robust decrease in capital investment among fossil

power plants in the United States. I identify the effect of competition by using the large-

scale divestiture of power plants that occurred in the late 1990s, in which regulated utilities

sold or transferred hundreds of power plants to unregulated entities, as part of broader

reform. By comparing fossil power plants before and after divestment, I find that power

plants are 47 MW (9.1%) smaller, on average, after exposure to competitive markets,

relative to similar units that remain regulated. The reduction in size corresponds to
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roughly $9.3-$23.4 billion in avoided investment, per year, across the cohort of 273 divested

plants. Divested power plants do not operate less efficiently, as a result of the decreased

expenditure, suggesting that the cost savings are welfare-enhancing. Finally, I show that

competitive reforms reduced investment in fossil plants, in part, by removing a distortion

to utility investment within cost-of-service regulation. This distortion is not specific to

one technology, suggesting regulation may similarly inflate utilities’ future investment in

renewable power plants as it did for past investment in fossil.

I highlight two questions that emerge from the analysis which could motivate additional

research. First, regulated utilities, to date, have not led new investment in renewables,

raising concerns that they may actually under-invest in the clean energy transition (An-

donov and Rauh, 2024; Fogler and Ver Beek, 2023). Future work may seek to explore the

decision from a dynamic perspective, incorporating how regulated utilities’ pre-existing

stock of natural gas capacity—itself affected by regulation (Gowrisankaran, Langer and

Reguant, 2024)–can impact firms’ investment decisions going forward. Second, I find a

connection between the operating characteristics of a power plant and how it is affected by

competitive markets. Because renewables operate differently than traditional, fossil power

plants (Joskow, 2011), one open question is how their characteristics may mediate the

magnitude of the effect of competitive reforms (e.g., larger or smaller than that observed

for fossil plants?). As one illustration, solar and wind can be curtailed, if the supply of

renewable generation exceeds demand (Novan and Wang, 2024). We might imagine, as

a result, that the effect of competitive reform could vary based on the level of renewable

capacity that is already operating within a region, creating interesting patterns of spatial

and time heterogeneity.

The United States stands on the precipice of massive investment in electricity generation.

To decarbonize the electricity system, as a means to mitigate climate change, will require

more than doubling the existing fleet of power plants. The analysis in this paper high-

lights the crucial role that market structure can play in determining the total cost of this

transition to consumers. A new renewable grid, built to be around 9.1% too large, could

cost consumers hundreds of billions in unnecessary investment. As a result, policymakers

and academics may wish to consider competitive reforms as a policy tool to help reduce

the long-term infrastructure costs of decarbonization.
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